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10 per cent or less over the 27 db range in incident local

oscillator power level. The total change in shunt capac-

ity over the same range operatinq in the optimum bias

condition was also considerably less than in the zero

bias condition.

The general characteristic of reduction of signal sensi-

tivity by decreasing or increasing the bias from the

optimum condition, as is demonstrated in Figs. 1–5,

points to another possible application of the biased

mixer diode. Although not shown in these figures, the

application of a backward bias (negative values of the

abscissas in Figs. 1–5) causes a smooth decrease in sig-

nal sensitivity as the bias goes through zero into the

negative region. These same trends hold at high signal

levels, that is, the bias controls either the high signal

level or low signal level conversion loss. If the mixer

diode has a positively or negatively polarized feedback

AGC type of signal applied when operating at optimum

dc bias, or a negatively polarized feedback signal when

operating at zero dc bias, signal limiting could be

achieved at the input to the first IF stage. This could

be done only at high signal levels; otherwise the reduc-

tion in signal to noise ratio wound deteriorate low sig-

nal level performance. However, at high incident signal

levels a reduction of S/N is tolerable. Thus at high sig-

nal levels this type of automatic signal limiting would

serve as a supplementary adjunct to a conventional

AGC, the automatic signal-limiting bias being de-

veloped at a lower level, say after only a few stages of

amplification. This would keep the lower level amplifiers

from saturating at high incident RF signal levels and

thereby extend the effective AGC range. Whether the

signal distortion introduced by the accompanying

changes in equivalent mixer Rp and CP would be more

or less than that caused by amplifier saturation would

have to be determined.

CONCLUSIONS

The experimental observations disclosed that:

1) The optimum bias for a particular type of diode

varies little from diode to diode within a type.

2) The optimum bias is independent of signal or L.0.

frequency.

3) There is a large tolerance, percentagewise, in the

vicinity of optimum bias where the resultant tan-

gential signal sensitivity is reduced by only about

1 db for 10 db reduction (from rated values) in

local oscillator power.

These results lead to the inference that the use of

optimum dc bias as a control feature in mixer design

applications should be quite practical.

One to five specimens of several diode types, chosen

merely because they were available, all demonstrated

that a particular dc bias makes the RF and IF im-

pedances practically stationary with respect to local

oscillator power changes. These results suggest to the

author that this may be a universal characteristic of

mixer diodes that, to his knowledge, has not been hereto-

fore observed.
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which the line is used. The ensuing attenuation is higher for the low

frequencies but lower for the high frequencies, in comparison with

the solid conductor line. The corresponding phase (that is, total phase
minus the constant delay) is substantially more linear than for solid
conductor lines in the frequency interval of interest. The real part

of the characteristic impedance is more independent of frequency
than for the solid conductor case. The reactive part of the character-
istic impedance increases faster for low frequencies, but can be very
nearly represented by a pure capacity, thus enabling a more ideal
and simple line termination with lumped elements.
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1. INTRODUCTION

A

COMPLETE field treatment of this transmission

line as a boundary value problem is very cum-

bersome because of the complexity of matching

boundaries in multiple adjacent regions of different

material, requiring the solution of a set of simultaneous

transcendental equations. The subject matter com-

monly encountered in textbooks is the framework of the

analysis combined with a discussion of the most con-

spicuous engineering approximations. It is one of these

engineering cases which will be submitted here to a

closer examination because it is believed to have some

attractive features which might be of interest in current

applications.

The transmission improvements in thin tubular con-

ductor transmission lines were probably first mentioned

by, Carson and Mead; relevant details are dispersed in

a number of U. S. patents.1 Published experimental evi-

dence of the transmission characteristics of these lines

was probably given first by Tear and Schatz2 in 1944,

who measured the attenuation as a function of fre-

quency. They found that the attenuation in the range

of high frequencies was lower than in the solid conductor

case, an effect then somewhat unexpected even though

predicted theoretically.

There is, to the best of our knowledge, no experi-

mental material which explicitly confirms that the non-

linear distortion in phase is likewise smaller than for

solid conductors, as predicted by Carson and Mead.

The distortion component in the phase of transmission

lines is a subject that is very much neglected experi-

mentally. This neglect is justifiable somewhat if one has

absolute faith in the possible reconstruction of phase

from attenuation data. We believe that this reconstruc-

tion is possible. Nevertheless, more ample experimental

information should be welcomed as a check on the ap-

plicability of the phase and attenuation relations, which

in turn are needed to check the validity of the engineer-

ing approximations of the field approach.

It will not be necessary here to go through all the

fundamental equations of transmission line theory. For

the present purpose, reference is made to Morgan’s3

treatment of the Clogston line. The introductory part of

Morgan’s treatment is particularly suited for a discus-

sion of the present case. The Clogston line represents a

rather drastic and revolutionary proposal to improve

transmission characteristics by modifying wall (or sur-

face) impedances of the conductors. The tubular con-

ductor can be considered, for theoretical purposes, as a

degenerate case of the Clogston-type conductor. The

simple tubular conductor, however, has the advantage

that its practical realization is not beset with so many

constructional difficulties as the Clogston-type con-

1 U. S. Patent Nos. 1, 817, 964; 1,972,877; 2,052,317.
2 B. R. Teare and T. R. Schatz “Copper-covered steel wire at

radio frequencies, ” PROC. IRE, vol. 32, pp. 397-403; July, 1944.
3 S. P. Morgan, “Laminated transmission lines, ” Bell .Sys. Tech.

~., VO]. 31, p. 833; 1952.

ductor. The discussion in this paper is in essence an

adaptation of Morgan’s treatment for engineering ap-

proximations relevant to the tubular conductor.

II. SURFACE IMPEDANCES

The phase and attenuation characteristics of wave-

guide structures are primarily determined by three

factors:

1)

2)

3)

The geometry of the guide associated with the

choice of transmission mode.

The electrical characteristics of the surfaces which

constitute the geometry.

The electrical characteristics of the transmission

medium itself (that is, “the dielectric).

For a fixed mode and geometry one may observe that in

a first approximation, the expressions for attenuation

and phase are made up of additive contributions pro-

portional, respectively, to the real and imaginary part

of the impedance ratio

ZW3H(,urface)
J

z
(1)

transmibsmn rnd LIIm

taken for all the surfaces.

The first-order phase and attenuation expressions for

the coaxial line (TEM mode) can be written to demon-

strate this feature. (See formulas 44 and 45, on page 894

of Morgan3)

Re Z1/Z Re ZJZ
~= +

2pl in p2/pl 2pz in p2,/pl
(2)

Im 21/2 Im 2,/2
,6 = Q’”ep +

2pl in p2/pl
+

2p: In p2,/pl ‘
(3)

PI= radius, inner conductor,

PZ = radius, outer conductor,

ZI = surface impedance, inner conductor,

Z2 = surface impedance, outer conductor,

c = permittivity of transmission medium,

p = permeability of transmission medium,

Z = v’p/e = intrinsic impedance of transmission me-

dium,

u = frequency X2~.

The range of validity of expressions in (2) and (3) as a

function of frequency is primarily determined by the

correctness of the expressions which one inserts for Zl,

Z?, and Z, except for a very-low-frequency restriction

which will be discussed in Section IV.

Physically, the design problem of any guide is to

optimize the ratio of the energy propagating in the axial

direction of the guide to the energy emerging radially

into the walls. This aim, roughly speaking,can be

approximated by raising Ztrz.a~i8Sio. and lowering

Zwa,l.
A high Z~~a,n8~18Sto. can be approached by low e and

high p materials. The limitations of high p materials for

this purpose are too well known to discuss them any
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further at this instance. So far, the empty space e and p

are best for a Iossless and high transmission impedance;

that is,

/

‘Po
Z = — = 377 ohms. (4)

CO

The ZW.11 in almost all transmission lines and guides

in actual use is determined by the intrinsic impedance

of the bulk conductor, that is,

—

Zwall = /4;(l+j), (5)

where a = conductivity of the wall material and w = per-

meability of the wall material.

As a comparison, for copper

d@/J— s 2.61(.-4ohm at 1 MC
2U

then known to be

z, – z,
y=

Zc+zt”
(lo)

The real advantage of using the so-called canonical four

terminal parameters, -y and Z,, rather than the equiva-

lent circuit parameters is that both of these can be more

conveniently and simply expressed in the material con-

stants a, p and e, which are the parameters physicall~-

available for the design.

Fig. l—Surface coating material ~. Conductivity u: permeability p,
on base material @, representing terminating Impedance Zt.

—

d
(6)

UP The relations expressing ~ and Z, in the material con-
— s 2,6 10–’ ohm at 104 Mc.
2U

stants are known to be

Hence, even for extremely high frequencies and rela-

tively poor conductors,

(7)

The objectionable feature of this ZWall is that the real

and imaginary parts are both proportional to <ti,

which happens to be incompatible with a constant am-

plitude and low dispersion device. The devout wish of

the communication engineer is

Re ZW211 = independent of w and low,

Im Z,v,ll = proportional to a (and not &). (8)

The fact that the amplitude and dispersion of the axial

wave depend on the response of the wall to the radially

emerging wave strongly suggests a further analysis of

the wall impedance. The simplest conceivable struc-

tures in this connection are (thin) conducting layers

backed (terminated) by another material, with different

electrical characteristics, as illustrated in Fig. 1.

The surface impedance Z, of a :simple composite sur-

face as given in Fig. 1, is according to standard theoryl

where y is the propagation parameter of material O, Z.

its intrinsic or characteristic impedance and r the reflec-

tion coefficient in the “four terminal section” @ of

thickness t. The terminating impedance represented by

material @ is given as Z~; the reflection coefficient is

4 See for instance, S. Ramo and J. R. Wlhinnery, “Fields and Waves
in Llodern Radio, ” John Wiley and Sons, Inc., New York, N. Y. Eq.
(9) is implied by the explanations in .Artic}.e 6.10.

. = f/y(l+j)

—

z. =
d

:(l+j).

(11)

(12)

Both are complex with phase angles 7r/4, which is char-

acteristic for any conductor in the frequency range

where conduction current prevails over displacement

current; that is,

u>> ]jrJE[. (13)

The inequality equation (13) still holds for metals in

the range of optical frequencies.

.\nother known restriction for (11) andl (12) is that the

radius p of surface curvature should be large with respect

to the so-called skin depth, given by the reciprocal

value of the factor in ~; that is,

d
2

p>> —’
up u

(14)

The inequality (14) of course breaks down for low fre-

quencies. But for thin layers the current is substantially

confined to the thickness of the layer, and (14) can then

be replaced b>-

p >> t. (l~a)

Now the real and imaginary parts of the impedance

function Z, as given by (9) for different reflection co-

efficients r, (10), will be evaluated. This reflection co-

efficient is real if a metal coating is backed by another

metal layer thick enough so that Zt may be taken as the

intrinsic impedance of this second metal. Then r, in

principle, lies between — 1 to +1; that is,

–I<r<+l. (15)
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For another case of engineering interest, namely a con-
/

sinh (.$ + <Q) – sin ~~ 1

ductor @ enclosing an essentially lossless dielectric @,
Re Z. = <H

2, is very large, and r is effectively real, – 1. It is con- ~ < ~ < ~
1

cosh (~ + <fi) + COS @ ~

venient for the decomposition of Zg into real and imag- — — I
(23)

inary parts to introduce r as an exponential. This re- – sinh ($+ <fi) + sin ~~ 1

quires that two cases be distinguished.
Im Z. = @

[ cosh (f + v@) + COS ~ii ~“

0>?’ >-1 T = e–t–., = — e–~ (16)

0>7>+1
The functions in the right-hand members of (22) and

Y = e–( for~=O~@. (17)
(23), preceding the common factor l/2at, present four

The real and imaginary parts of 2. for the reflection co- single parameter families of curves with argument Q

efficient intervals in (16) and (17) are then

0>?’ >-1

with

0<?’ <+1

“d-
sinh (2~t + ~) + sin 2+t ~

Re 2. =
cosh (2’j7t + .$) — COSz~t h

(18)

sinh (2Tt + .$) — sin 2~t
Re Z, =

“u

‘wJ

cosh (z~t + .$) + COS zjd G

“d
sinh (2~t + $) + sin z~t O-W

Im 2s = —. (19)
cosh (2’7t + ~) + COSz~t 2U

For design purposes, one likes to see these expressions as

functions of Q. The argument ft together with (11) thus

suggests the definition,

V’ii = 2qt

or

Q = 2wut2 (20)

where Q is a dimensionless reduced frequency propor-

tional to the actual frequency.

The factor <op/2a, which stems from the charac-

teristic impedance Zc given by (12), can be expressed in

the reduced frequency defined by (20) as

Substitution of (20) and (21) into (18) and (19) yields

the following set of functions:

They have been tabulated and the results are shown in

Figs. 2 and 3. The parameter ~ has been reconverted

into the reflection coefficient Y so that the real and

imaginary parts of Z, in (18) and (19), respectively, can

be combined in one family with parameter r between

–1 and +1.

It should be noted that these curves for metal layers

oscillate around the curve for r = O. For large argument

Q, all of them asymptotically approach the curves for

r = O. The reflection coefficient, zero, corresponds to the

behavior of a solid conductor, because Z.= Z~ can be

effected by backing a metal layer by a metal with the

same electrical characteristics. To emphasize the possi-

bilities of linear phase behavior, it has been thought de-

sirable to plot the curves on a linear rather than on the

usual logarithmic scale.

II 1. PRACTICAL POSSIBILITIES FOR A REFLECTION

COEFFICIENT r = – 1

Recalling the structure of the attenuation and phase

Re Z. = N@
sinh (.$ + ~fi) + sin <~ 1 formulas for a coaxial line given by (2) and (3), it should——
~osh (~ + <H) – Cos ~fi 2at be clear that Figs. 2 and 3 immediately give the relative

(22)
behavior of a and 13. If both conductors are the same

electrically, then Fig. 2 gives the true a of the cable

Im Z, = <H
sinh (~ + @) – sin <fi 1 except for a constant of proportionality, provided the

cosh (~ + V@ — COS <ii Zut transmission medium (dielectric) itself is sufficiently
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Fig. 3—Reactive part of surface impedance Z, as
a function of reduced frequency $%

lossless. The same is true for the phase response. Fig. 3

gives the relative phase due to the influence of the wall.

The total phase delay then is obtained by adding the

linear contribution already associated with the length

of the cable.

.Y quick look at Figs. 2 and 3 shows that a reflection

coefficient r = — 1 comes fairly close to meeting the de-

sign requirements laid down in (8). The phase stays

quite linear up to Q = 8 to 10. For a highest frequency of

107 cps this corresponds, according to (20), to a layer

thickness of the order of 1 mil for copper. For the same

frequency of 107 cps (see Fig. 2), R, is lower than the

1?, of a solid copper conductor (r== O).

A reflection coefficient – 1, according to (10), re-

quires a terminating impedance ZI much larger than the

characteristic impedance of the surface layer; that is,

; >>1. (24)
c

For an electrically sufficiently thick termination, Zf

may be taken as the intrinsic impedance of material 2

in Fig. 1. The ratio then, according to (5) or (1 2), be-

comes

(25)

For pl, LTI and pz, UZ the permeabilities and conduc-

tivities of copper and iron, respectively, this ratio can

be of the order

Zir..
— = 500,
7Jcopper

(26)

thus corresponding to an r very close to – 1.

The high permeability substrate material is more

specifically useful for the outer conductor of a coaxial

line because it quenches the outside field and conse-

quently reduces cross talk and proximity effects for

low frequencies.

Another possibility for obtaining a high impedance

termination more specifically applicable to the inner

conductor, can be effected by means of a dielectric. A

dielectric usually has to be very thick before it shows

anything like its intrinsic impedance. A solid dielectric

rod, however, has a very high impedance in its radial

direction for frequencies below the cutoff frequencies

of the waveguide modes which it can support if sur-

rounded by a tubular conductor. It should be noted

that the insertion of another metal wire embedded in

the dielectric inside the tubular conductor (to provide,

for example, strength or a low resistance path for re-

peater power) would disturb this situation because of

the creation of a second TENI transmission path.

Now the expressions obtained for the surface im-

pedances will be used in the evaluation of a transmission

line. It will be useful, and close to practical possibilities,

to assume that the surface impedances of the inner and

outer conductors are the same, and that the interface

reflection coefficient r between conductor and high

impedance substrate is — 1. Hence,

Z,=z, =z, (with r = – 1)

Im Z= = ~fi
sinh W@ — sin v’fi 1

— —. (27)
cosh & — COS @ii Zut

Furthermore, it is convenient to introduce a special

symbol for the geometric factor in the phase and at-

tenuation expressions in (2) and (3).

(LL 1,—

(28)
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The expressions for attenuation and phase can then be

written in the simple form

Im Z.
i3=udq.1+ _.

d

(29)
l-l

P—
e

The wave impedance Z in the axial direction is the

quotient of the radial electric field and azimuthal

magnetic field. This ratio according to formula (33) in

Morgan’s paper3 is

zw=~ (with T = a +j~), (30)
jw e

if the conductivity of the medium between the con-

ductors is zero. Expressed in the (dimensionless) re-

duced frequency Q defined by (20), the real and imag-

inary parts become

(31)

For the derivation of (31) from (30), it has been as-

sumed that the conductors and the medium between

the conductors have the same permeability.

The characteristic impedance Z, of the line itself

can now safely be obtained from (31) by means of the

common formula

in p2/pl
z, = z u,>

27
(32)

because, as mentioned earlier, ZW is exact. Eqs. (29)

and (32) for a thin conductor line have been plotted in

Figs. 4–7 to show the over-all performance in compari-

son with a solid conductor line of the same dimensions.

The asymptotic behavior of (29) and (31) for high

and low frequencies depends very much on the be-

havior of Z.. One finds

and

lirn Re Z. = ~
Q+O d

(33)
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Fig. 5—Comparison of the phase response of a solid conductor
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The high-frequency- approximations in (33) clearly lead

to the conventional formulas for a solid conductor line

with a well-developed skin effect. For attenuation,

phase, and impedance, one finds as high-frequency ap-

proximations, by substituting (33) into (29) and (31):

The low-frequency approximations

tained by substituting (34) into (29)

1
~=

/w
;

(36)

are similarly ob-

and (31) :

(34)
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(20), (28), and (32) that
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Fig. 6—Comparison between the resistive parts of the characteristic
impedance of a transmission line with solid conductors and a
transmission line with tubular conductors (zero level high-fre-
quency value).
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Fig. 7—Reactive parts of the characteristic impedance of a transnris-
sion line with solid conductors and a transmission line with
tubular conductors in comparison with a pure capacitive reac-
tance.

“’.=X(l++:)’

(37)

Xote that a and Re Zw in (37) and (38) are constants;

the latter is almost equal to ti,u/E, because t/p as a

rule is very small. The phase constant /? has only a

linear correction term, implying that the propagation

velocity is slowed down with respect to the wave

velocity (cp)–liz, while Im Zu, is seen to behave as a

pure capacitance for Q+O. The reactive part of Z. can

therefore also be represented by a capacity C., so that

Im 2.= I/w C.. For the value of C,, one finds through

‘Lrplpz

‘( )
cc = udep t —

PI+P2 ‘

(39)

For the commonly used diameters of coaxial cables

and a copper conductor with a thickness of the order of

t =0.01 mm, (39) yields a capacity of the order of a

few 0.01 Kf. The capacitance given by (39) should be a

constant within reasonable limits up to, values of Q for

which Im Z. is still substantially linear. From Fig. 3

for r = – 1, it is seen that Q = 10 may be taken as an

acceptable upper limit. The deviation between an RC

termination as prescribed by (38) and (39), and the

actual Z. of a thin conductor is explicitly shown in

Fig. 7. The deviation is seen to become very small for

the low frequencies where it counts most. Hence for

Q <10, one may expect a somewhat improved reflection-

less termination by using as representation for 2., the

following equivalent circuit:

2 tReZ. = 1np2”pl

z. =
T&(l+::)

4TPIPZ

j

+-c. = crd~.t— .
PI + P2

The constant a in the low-frequency approximation

in (37) implies that the conductor is uniformly pene-

trated by the current, thus suggesting that the resist-

ance per unit length in the lumped circuit approxima-

tion can be expressed by the dc value

(40)

The attenuation in the lumped circuit approach is

known to be

RC
a lumped = ~

d

—,!
L

(41)

if

R<< wL. (42)

Inserting (40) and the usual expressions L =1.L/27r in

(PV’PI) and C= ~~@n WPI) into (41), One finds that

a lumped = a (43)

as defined by (37), if one uses (28) for l/p.

The curious thing about this identification, (43), is

that a lumped, in a sense, stems from a, high-frequency

approximation, see (42), while the a in (37) stems from

a low-frequency approximation. The answer to this

paradox is that there is an overlap in the respective

regions of validity. To specify this overlap region, one

must now find the Jower limit of Q corresponding to

f’42). for which (2} and (3) are still valid.\ ,, ./
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The low-frequency limit of the expressions in (2) and

(3) for a and @ can be examined more precisely with

the help of the asymptotic expressions for the con-

ductor surface impedance Z,. An expression for 72= (a

+-iD)’, valid down to zero frequency, can be obtained

from Morgan’s paper3 (see page 894, formula 41). It is

— (l/p, + l/p,)z8
‘Y2 = – W2W +jdcp —

d

(44)

Yin (p2/pJ
e

Using (28) one can write this in the form

‘2=-”’’’{1+%} (45)

illustrating the deviation in ~z from free-space propaga-

tion conditions. One may now apply (34) and (2o); (45)

then becomes

‘-l’
{}

‘=–dq.l 1+: .
jnp

(46)

The first two terms in the binomial expansion of the

square root of (46) are adequate for justifying (2) and

(3) only if

Q>>?. (47)
P

The ratio f/p is very small; for example, f = 10–5 m and

p = 10–3 m gives t/p= 10–2. Hence, 0 = 10–1 should be an

acceptable lower limit for Q. Eq. (47) represents a more

explicit form of Morgan’s requirement (formula 42).3

CONCLUSION

The thin conductor coaxial transmission line has

been discussed from a theoretical point of view with

somewhat more detail than customary, leading to the

conclusion that this line gives a substantially improved

phase and attenuation over a reduced frequency range

of approximately 0.1 <Q< 10 with Q = 2p o-odz [see

(20) ]. For Q> 10, the thin conductor line approaches

the behavior of the solid conductor line; for Q <0.1, the

quality of the line deteriorates depending on how small

the thickness t of the conductor is with respect to the

cross-sectional dimensions of the line. The characteristic

impedance in the interval 0.1 <L! <10 can very nearly

be represented by a resistance in series with a capaci-

tance of value indicated by (39).

These theoretical results depend on a rather complex

chain of simplifying engineering assumptions which

really need some further experimental justification.

The attenuation expressions are reasonably well sup-

ported by experiment. No separate and direct experi-

mental evidence exists for the improved linearity of

the phase response. Some preliminary experiments at

Bell Telephone Laboratories on an available cable sample

provided an indirect proof that the phase distortion is

reduced, because pulse response on the thin conductor

cable is considerably- better than on its solid conductor

counterpart.

In this connection it is important that the approxi-

mate phase and attenuation expressions in (29) can be

shown to satisfy the criterion of physical compatibility;

that is, they cannot lead to a response prior to the time

of initiation of the input signal plus, at least, the empty

space delay time corresponding to the length of the line.

This criterion is also met by the expressions in (33) for

the solid conductor line. This holds even though the

expressions for either case are known not to be valid

for the entire frequenc~- range from zero to infinity. A

j ustitication of these statements would require a de-

tailed argument that does not fall within the scope of ~

this report. Note that it is frequently assumed that

small nonlinear phase components can be ignored with

respect to the linear delay component; for example,

the @ term with respect to u in (35). This approxima-

tion does not satisfy the physical compatibility cri-

terion and thus leads to physically impossible transient

responses.
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